Issue 3, 2011

Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO2electrode modified by boron doping

Abstract

Highly crystallized boron-doped anatase TiO2 nanoparticles are prepared by a facile synthetic route and successfully used as the photoanode of dye-sensitized solar cells (DSCs). We have observed that the boron doping could improve the crystallinity of TiO2. Moreover, the highly crystallized anatase boron-doped TiO2 were analyzed by electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy, and the internal resistances of the boron-doped DSCs were studied by measuring the electrochemical impedance spectra (EIS). The improved photocurrent density of the boron-doped DSCs is due to a significant enhancement of IPCE in the range 370–650nm in comparison with that of the undoped DSC. Meanwhile, the energy-conversion efficiency of the cell based on the B-doped TiO2 electrode is enhanced significantly, by about 9%, compared to that of the undoped DSC. Overall, DSCs based on B-doped electrodes show good stability and remain over 95% of their initial efficiency under visible light soaking for more than 2400 h.

Graphical abstract: Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO2 electrode modified by boron doping

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2010
Accepted
03 Oct 2010
First published
11 Nov 2010

J. Mater. Chem., 2011,21, 863-868

Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO2 electrode modified by boron doping

H. Tian, L. Hu, C. Zhang, S. Chen, J. Sheng, L. Mo, W. Liu and S. Dai, J. Mater. Chem., 2011, 21, 863 DOI: 10.1039/C0JM02941F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements