Issue 5, 2011

Polymer solar cells based on diphenylmethanofullerenes with reduced sidechain length

Abstract

Diphenylmethanofullerenes (DPMs) show interesting properties as acceptors in polymer bulk heterojunction solar cells due to the high open circuit voltages they generate compared to their energy levels. Here we investigate the effect of reducing the alkane sidechain length of the DPMs from C12 to C6 in the properties of the solar cell. This change leads to an increase in the electron mobility, thus allowing for a lower fullerene content, which in turn results in an increase in the short circuit current and, finally, in an increase in the efficiency of the device (from 2.3 to 2.6%) due to the higher concentration of the more absorbing polymer in the film. Atomic force microscopy images and external quantum efficiencies suggest the absence of crystallization of the fullerene to be at the origin of the slightly reduced performance of DPMs versus the standard fullerene [6,6]-phenyl-C61-butyric acid methyl ester, implying that higher efficiencies could be possible with this class of fullerenes.

Graphical abstract: Polymer solar cells based on diphenylmethanofullerenes with reduced sidechain length

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2010
Accepted
05 Jun 2010
First published
11 Aug 2010

J. Mater. Chem., 2011,21, 1382-1386

Polymer solar cells based on diphenylmethanofullerenes with reduced sidechain length

H. J. Bolink, E. Coronado, A. Forment-Aliaga, M. Lenes, A. La Rosa, S. Filippone and N. Martín, J. Mater. Chem., 2011, 21, 1382 DOI: 10.1039/C0JM01160F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements