Issue 40, 2010

Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration

Abstract

Nanocomposite scaffolds of bioactive glass foams containing tailor made rare earth oxide (i.e. nanoceria) additives were demonstrated to enhance the production of collagen by HMSCs (Human Mesenchymal Stem Cells) compared to bioactive glass scaffolds without nanoceria. The addition of osteogenic supplements was not required for this to occur. Two different preparations of nanoceria were successfully incorporated in 3-D bioactive glass foam scaffolds and were compared with bioactive scaffolds without nanoceria. The nanoparticles had individual particle sizes of 3–5 nm while the agglomerate size varied from 5–15 nm. Preliminary investigations show that nanoceria is non toxic to the cells. After 10 days of culture, nanoceria containing scaffolds showed enhanced osteoblastic differentiation of HMSCs and collagen production compared to the scaffolds without nanoceria even in the absence of any osteogenic supplements (i.e. ascorbic acid, dexamethasone and β-glycerophosphate). This could be due to the incorporation of nanoceria, which acts as an oxygen buffer thereby regulating the differentiation of HMSCs. Further investigations are currently underway to determine the role of the nanoceria controlled oxygen buffering on the HMSC differentiation.

Graphical abstract: Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2010
Accepted
07 Sep 2010
First published
17 Sep 2010

J. Mater. Chem., 2010,20, 8912-8919

Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration

A. S. Karakoti, O. Tsigkou, S. Yue, P. D. Lee, M. M. Stevens, J. R. Jones and S. Seal, J. Mater. Chem., 2010, 20, 8912 DOI: 10.1039/C0JM01072C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements