Issue 39, 2008

Solution processable bulk-heterojunction solar cells using a small molecule acceptor

Abstract

We report a small-molecule electron-acceptor based on 2-vinyl-4,5-dicyanoimidazole [Vinazene™] for use in solution processed organic solar cells. The material has a favourably located LUMO level of −3.6 eV and absorbs strongly in the visible spectrum up to 520 nm—attractive properties compared to the widely used acceptor (6,6)-phenyl-C60-butyric acid methyl ester (PCBM). The Vinazene derivative was blended with a poly(2,7-carbazole) donor—chosen for its complementary absorption range and comparatively high-lying HOMO level of −5.6 eV—and incorporated into bulk heterojunction devices. The influence of the donor/acceptor composition and annealing temperature on device performance were then investigated. The best performing devices exhibited reasonable power conversion efficiencies of 0.75% and open-circuit voltages of more than 1.3 V, substantially higher than previously reported devices using small molecule acceptors.

Graphical abstract: Solution processable bulk-heterojunction solar cells using a small molecule acceptor

Supplementary files

Article information

Article type
Communication
Submitted
07 Aug 2008
Accepted
28 Aug 2008
First published
15 Sep 2008

J. Mater. Chem., 2008,18, 4619-4622

Solution processable bulk-heterojunction solar cells using a small molecule acceptor

Z. E. Ooi, T. L. Tam, R. Y. C. Shin, Z. K. Chen, T. Kietzke, A. Sellinger, M. Baumgarten, K. Mullen and J. C. deMello, J. Mater. Chem., 2008, 18, 4619 DOI: 10.1039/B813786M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements