Issue 41, 2006

Synthesis of new microporous layered organic–inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite

Abstract

We have developed microporous organic–inorganic hybrid nanocomposites by alkoxysilylation of 4,4′-biphenyl-bridged alkoxysilane compounds, which contain triethoxysilyl, methyldiethoxysilyl, and dimethylethoxysilyl groups at each end of the 4,4′-biphenylene unit ((CH3)n(C2H5O)3−n-Si-C12H8-Si-(OC2H5)3−n(CH3)n, n = 0, 1, or 2, abbreviated as BESB(0), BESB(2), or BESB(4), respectively, where the number in parentheses indicates the number of methyl groups in these molecules), in the interlayer of a crystalline layered silicate, ilerite. XRD, 29Si solid-state NMR and fluorescence spectroscopy revealed the immobilization and bridging formation of the BESB molecules between the silicate layers by condensation, not only with H-ilerite, but also with the BESB molecules. The interlayer structures exhibited different molecular arrangements. BESB(0) and BESB(4) molecules are present as a monolayer arrangement in which BESB(0) molecules form the oligomeric species caused by close stacking like a dimer. BESB(2) molecules form mainly bilayer-like aggregates in the interlayer. The structural differences are caused by the different reactivities of the BESB molecules, which control their polymerization in the interlayer. The resultant BESB(0)- and BESB(2)-ilerite had high microporosity with BET surface areas (508 and 578 m2 g−1 for BESB(0)- and BESB(2)-ilerite, respectively). The micropores showed higher toluene adsorptivity than several other porous silica materials due to the successful surface modification. Consequently, this approach provides a new method for constructing novel microporous nanocomposites, the key to improved selectivity and activity in separation and catalytic applications.

Graphical abstract: Synthesis of new microporous layered organic–inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite

Article information

Article type
Paper
Submitted
14 Jul 2006
Accepted
17 Aug 2006
First published
31 Aug 2006

J. Mater. Chem., 2006,16, 4035-4043

Synthesis of new microporous layered organic–inorganic hybrid nanocomposites by alkoxysilylation of a crystalline layered silicate, ilerite

R. Ishii, T. Ikeda, T. Itoh, T. Ebina, T. Yokoyama, T. Hanaoka and F. Mizukami, J. Mater. Chem., 2006, 16, 4035 DOI: 10.1039/B610088K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements