Issue 5, 2006

Thermal decomposition of single source precursors and the shape evolution of CdS and CdSe nanocrystals

Abstract

A systematic analysis of the thermal decomposition of various single-source precursors is reported with the aim of finding a correlation between the pattern of thermal decomposition and morphology of the nanocrystals resulting from the thermolysis of these precursors in a coordinating solvent. The precursors studied are cadmium complexes of N,N′-dioctylthiourea, N,N′-diocyclohexylthiourea, N,N′-diisopropylthiourea, N,N′-tetramethylthiourea, dithiobiurea, ethylxanthic acid, thiosemicarbazide, selenosemicarbazide. Cadmium complexes of thiosemicarbazide and selenosemicarbazide uniquely yield rod-shaped CdS and CdSe nanocrystals respectively while all other precursors yield spherical CdS nanoparticles. Nanorod formation without the aid of any external shape-directing agent is explained through analysis of the thermal decomposition patterns, as observed by thermogravimetric analysis, for the range of precursor molecules. It is suggested that the low activation energy for the semicarbazide precursor decomposition, compared to those that produce dot-shaped nanocrystals, provides conditions favourable for the growth of nanorods. Evidence supporting the idea that the semicarbazide precursors furthermore release a structure-directing agent during decomposition is provided by infrared spectra and elemental analysis. Hence it can be presumed that thiosemicarbazide and selenosemicarbazide ligands each act as both the source of sulfur and a shape-directing agent.

Graphical abstract: Thermal decomposition of single source precursors and the shape evolution of CdS and CdSe nanocrystals

Article information

Article type
Paper
Submitted
15 Sep 2005
Accepted
31 Oct 2005
First published
18 Nov 2005

J. Mater. Chem., 2006,16, 467-473

Thermal decomposition of single source precursors and the shape evolution of CdS and CdSe nanocrystals

P. S. Nair and G. D. Scholes, J. Mater. Chem., 2006, 16, 467 DOI: 10.1039/B513108A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements