Issue 8, 2004

Non-doped red organic light-emitting diodes

Abstract

A convenient and improved procedure has been developed for preparing the red fluorophore N-methyl-bis(4-(N-(1-naphthyl)-N-phenylamino)phenyl)maleimide (NPAMLMe) through the efficiently synthesized bis(4-bromophenyl)fumaronitrile, the necessary precursor in preparing NPAMLMe. This allows NPAMLMe to be an easily accessible material compared with other known red, organic light-emitting diode (OLED) materials. We also report an unusual approach in fabricating red OLEDs, which does not adopt a conventional red dopant but rather NPAMLMe as the host red emitter. The performance of the non-doped red devices has been studied in depth for the first time. Devices with varied layer thickness were fabricated for examining the compatibility of NPAMLMe with commonly known materials, electron-transporting tris(8-hydroxyquinolinolato)aluminium (Alq3) and hole-transporting 4,4′-bis(4-(N-(1-naphthyl)-N-phenylamino)phenyl)biphenyl (NPB). In the presence of a hole-blocking layer of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), the devices emit pure red electroluminescence (EL), and it is essentially voltage-independent. Red EL with a brightness near 4600 cd m−2 and an external quantum efficiency as high as 1.6% has been achieved. The performance of such non-doped, red OLEDs is comparable with or better than contemporary, dopant-based, red OLEDs, and the simple fabrication is the advantage of the approach.

Graphical abstract: Non-doped red organic light-emitting diodes

Article information

Article type
Paper
Submitted
26 Nov 2003
Accepted
13 Feb 2004
First published
03 Mar 2004

J. Mater. Chem., 2004,14, 1293-1298

Non-doped red organic light-emitting diodes

H. Yeh, L. Chan, W. Wu and C. Chen, J. Mater. Chem., 2004, 14, 1293 DOI: 10.1039/B315301K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements