Issue 8, 2009

In vitro biotransformation of dimethylarsinic acid and trimethylarsine oxide by anaerobic microflora of mouse cecum analyzed by HPLC-ICP-MS and HPLC-ESI-MS

Abstract

The capacity of the anaerobic microflora from a mouse cecum to metabolize dimethylarsinic acid (DMAV) and trimethylarsine oxide (TMAO) was examined in an in vitro assay system containing cecal contents in modified VPI buffer. Samples were incubated under anaerobic conditions at 37 °C for up to 24 hours and metabolic products were analyzed by HPLC-ICP-MS and HPLC-ESI-MS/MS. Under these conditions, DMAV was thiolated to dimethylthioarsinic acid (DMTAV) and dimethyldithioarsinic acid (DMDTA). The identities of DMTAV (m/z 154), DMDTA (m/z 170), and trimethylarsine sulfide (TMAS, m/z 152) were confirmed with HPLC-ESI-MS/MS. Three chromatographic separations were utilized to verify the lack of co-elution prior to quantification by ICP-MS. The predominant arsenical in reaction mixtures at 24 hours was DMDTA. The presence of TMAS in reaction mixtures after a six hour incubation implies a metabolism route from DMAV to TMAS possibly via reduction to dimethylarsinous acid, methylation to yield TMAO, and thiolation to TMAS. Addition of TMAO to in vitro assay systems containing cecal contents demonstrated that TMAO was almost quantitatively converted to TMAS within one hour. These combined results indicate that ingested arsenicals can undergo substantial metabolism mediated by the microflora of the gastrointestinal tract. Finally, metabolism of arsenicals occurring before absorption across the gastrointestinal barrier could be a modifier of exposure and dose.

Graphical abstract: In vitro biotransformation of dimethylarsinic acid and trimethylarsine oxide by anaerobic microflora of mouse cecum analyzed by HPLC-ICP-MS and HPLC-ESI-MS

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2008
Accepted
24 Apr 2009
First published
22 May 2009

J. Anal. At. Spectrom., 2009,24, 1062-1068

In vitro biotransformation of dimethylarsinic acid and trimethylarsine oxide by anaerobic microflora of mouse cecum analyzed by HPLC-ICP-MS and HPLC-ESI-MS

K. M. Kubachka, M. C. Kohan, S. D. Conklin, K. Herbin-Davis, J. T. Creed and D. J. Thomas, J. Anal. At. Spectrom., 2009, 24, 1062 DOI: 10.1039/B817820H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements