Issue 8, 2005

Optimization of ETV-ICP(TOF)MS and transient signal profiles for reducing isobaric interferences

Abstract

One of the advantages of the ETV sample introduction is the ability to temporally separate analyte elements in complex mixtures by differences in their vaporization temperatures within the ETV for ICPMS. However, the broadening of the transient peaks in the transport tubing often obscures this temporal resolution. This study shows that decreasing the transport tubing diameter produces little broadening beyond that produced during aerosol production in the ETV. Maintaining such narrow peaks through the transport process to the ICP permits time resolution to circumvent atomic isobaric interferences. Differences in vaporization characteristics of the elements were used to resolve the isobaric overlaps among Zn, Ni, Se, Ge, Cd, In and Sn. A Monte Carlo simulation that focused on particle motion from the ETV to the plasma source was employed to evaluate the roles of diameter of transport tubing and heating rate of the ETV on signal broadening. It was shown that laminar flow broadening was reduced by decreasing the transport tubing diameter and thus more closely reflected the generation function of the ETV. However, for some elements there was as much as a 75% reduction in signal from use of the smaller, 1.5 mm i.d. tubing. There was also a trend to further improve the resolution using lower heating rates of the ETV, although the longitudinal non-isothermality of the graphite furnace broadened the peaks beyond the values expected if there was no gradient along the length of the ETV. This was more noticeable for lower heating rates, e.g., <400 °C s−1. Results are presented for Monte Carlo simulations and time resolved signals obtained on an ETV-ICP(TOF)MS system.

Graphical abstract: Optimization of ETV-ICP(TOF)MS and transient signal profiles for reducing isobaric interferences

Article information

Article type
Paper
Submitted
19 Apr 2005
Accepted
23 May 2005
First published
20 Jun 2005

J. Anal. At. Spectrom., 2005,20, 687-695

Optimization of ETV-ICP(TOF)MS and transient signal profiles for reducing isobaric interferences

G. Ertas and J. A. Holcombe, J. Anal. At. Spectrom., 2005, 20, 687 DOI: 10.1039/B505482F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements