Issue 19, 2020

Catalytic oxidation of alcohols and alkyl benzenes to carbonyls using Fe3O4@SiO2@(TEMPO)-co-(Chlorophyll-CoIII) as a bi-functional, self-co-oxidant nanocatalyst

Abstract

Chlorophyll b was extracted from heliotropium europaeum plant, demetalated, allylated and grafted to acrylated TEMPO through a copolymerization protocol. Then, the chlorophyll monomers were coordinated to Co ions, immobilized on magnetic nanoparticles and the resulting hybrid was used as a powerful catalyst for a variety of oxidation reactions. By using the present method, oxidation of benzylic alcohols and alkyl benzenes to carbonyls was accomplished in water under aerobic conditions. Moreover, direct oxidation of alcohols to carboxylic acids was performed by adding NaOCl to the mixture. All entries were oxidized to the corresponding desired product with high to excellent yields and up to 97% selectivity. The catalyst was thoroughly characterized by CV, TGA, VSM, XRD, XPS, DLS, FE-SEM, TEM, UV-Vis, EDX, and BET analyses. The activity of the catalyst was investigated by applying various components of the catalyst to the oxidation model separately. The reasonable mechanisms are suggested based on the cooperation between the TEMPO groups and cobalt(III) (or Co(IV)) sites on the catalyst. The catalyst could be recovered and reused for at least 7 consecutive recycles without any considerable reactivity loss.

Graphical abstract: Catalytic oxidation of alcohols and alkyl benzenes to carbonyls using Fe3O4@SiO2@(TEMPO)-co-(Chlorophyll-CoIII) as a bi-functional, self-co-oxidant nanocatalyst

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2020
Accepted
04 Sep 2020
First published
25 Sep 2020

Green Chem., 2020,22, 6600-6613

Catalytic oxidation of alcohols and alkyl benzenes to carbonyls using Fe3O4@SiO2@(TEMPO)-co-(Chlorophyll-CoIII) as a bi-functional, self-co-oxidant nanocatalyst

B. Mahmoudi, A. Rostami, M. Kazemnejadi and B. A. Hamah-Ameen, Green Chem., 2020, 22, 6600 DOI: 10.1039/D0GC01749C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements