Issue 10, 2020

Molecular engineering low-surface energy membranes by grafting perfluoro-tert-butoxy chains containing fluorous silica aerogels

Abstract

The recent attention on perfluorinated superhydrophobic membranes has been accompanied by growing concerns over the potential degradation of longer than C6-perfluoroalkyl chain containing compounds in the environment to form bioaccumulating perfluoroalkyl acids. While maintaining the superhydrophobicity of the membrane, we have addressed the problem of bioaccumulation by immobilizing perfluoro-tert-butyl groups on the commercially-available aerogels. The resulting fluorous aerogels were electrosprayed on the top of commercial PVDF membranes to fabricate superhydrophobic membranes. The effects of varying the alkyl chain between the aerogel and the perfluoro-tert-butoxy groups and the concentration of the modified aerogel were studied to identify the optimal membrane for membrane distillation (MD). The fabricated membranes were tested for MD performance with sodium dodecyl sulfate (SDS) and saline water (3.5% NaCl). The F1-SiG100 membrane (prepared by grafting 300 mg of 1-(nonafluoro-tert-butoxy)-4-butylethoxysilane aerogel on 300 mg of PVDF-HFP) exhibited superhydrophobicity (water contact angle = 151.2°), a very rough surface (Ra = 2.17 μm), and an extremely low surface free energy (0.82 ± 0.17 mN m−1). It also showed high resistance to low surface energy feed of up to 0.5 mM SDS and saline water.

Graphical abstract: Molecular engineering low-surface energy membranes by grafting perfluoro-tert-butoxy chains containing fluorous silica aerogels

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2020
Accepted
14 Apr 2020
First published
14 Apr 2020

Green Chem., 2020,22, 3283-3295

Molecular engineering low-surface energy membranes by grafting perfluoro-tert-butoxy chains containing fluorous silica aerogels

V. M. Yim, A. S. Lo, B. J. Deka, J. Guo, J. A. Kharraz, I. T. Horváth and A. K. An, Green Chem., 2020, 22, 3283 DOI: 10.1039/D0GC00593B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements