Issue 7, 2018

Extended visible to near-infrared harvesting of earth-abundant FeS2–TiO2 heterostructures for highly active photocatalytic hydrogen evolution

Abstract

Photocatalytic water splitting is a key technology for long-term hydrogen evolution with low environmental impact. In this work, an environment-friendly photocatalyst consisting of FeS2–TiO2 heterostructured nanocrystals has been successfully prepared by wet chemical synthesis for enhancing the photocatalytic hydrogen production rate over a wide range of absorption wavelengths. Its absorption range has been extended from the ultraviolet–visible to near-infrared (NIR) spectrum. The results of ultrafast optical spectroscopy suggest that charge transfer occurs between the FeS2 and TiO2 interface under NIR pulsed laser irradiation (800 nm). The highest photocatalytic hydrogen production rate of the FeS2–TiO2 heterostructure has been obtained in comparison with FeS2 nanocrystals (NCs) and TiO2 nanoparticles (NPs) under irradiation by a mercury arc lamp or a xenon lamp. In the FeS2–TiO2 heterostructure, the FeS2 NCs as a light harvester can efficiently absorb visible and NIR light to generate much more photoelectrons than TiO2 NPs only for hydrogen production. For long-term photocatalytic hydrogen production, the FeS2–TiO2 heterostructures also reveal an outstanding durability over 40 h. Overall, the FeS2–TiO2 heterostructure shows potential to be a TiO2-based photocatalyst for clean hydrogen production in practical applications.

Graphical abstract: Extended visible to near-infrared harvesting of earth-abundant FeS2–TiO2 heterostructures for highly active photocatalytic hydrogen evolution

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2017
Accepted
06 Mar 2018
First published
06 Mar 2018

Green Chem., 2018,20, 1640-1647

Extended visible to near-infrared harvesting of earth-abundant FeS2–TiO2 heterostructures for highly active photocatalytic hydrogen evolution

T. Kuo, H. Liao, Y. Chen, C. Wei, C. Chang, Y. Chen, Y. Chang, J. Lin, Y. Lee, C. Wen, S. Li, K. Lin and D. Wang, Green Chem., 2018, 20, 1640 DOI: 10.1039/C7GC03173D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements