Issue 21, 2017

Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions

Abstract

Amino acids are potential substrates to replace fossil feedstocks for the synthesis of nitriles via oxidative decarboxylation using vanadium chloroperoxidase (VCPO), H2O2 and bromide. Here the conversion of glutamic acid (Glu) and aspartic acid (Asp) was investigated. It was observed that these two chemically similar amino acids have strikingly different reactivity. In the presence of catalytic amounts of NaBr (0.1 equiv.), Glu was converted with high selectivity to 3-cyanopropanoic acid. In contrast, under the same reaction conditions Asp showed low conversion and selectivity towards the nitrile, 2-cyanoacetic acid (AspCN). It was shown that only by increasing the amount of NaBr present in the reaction mixture (from 0.1 to 2 equiv.), could the conversion of Asp be increased from 15% to 100% and its selectivity towards AspCN from 45% to 80%. This contradicts the theoretical hypothesis that bromide is recycled during the reaction. NaBr concentration was found to have a major influence on reactivity, independent of ionic strength of the solution. NaBr is involved not only in the formation of the reactive Br+ species by VCPO, but also results in the formation of potential intermediates which influences reactivity. It was concluded that the difference in reactivity between Asp and Glu must be due to subtle differences in inter- and intramolecular interactions between the functionalities of the amino acids.

Graphical abstract: Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2017
Accepted
02 Oct 2017
First published
11 Oct 2017

Green Chem., 2017,19, 5178-5186

Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions

A. But, E. van der Wijst, J. Le Nôtre, R. Wever, J. P. M. Sanders, J. H. Bitter and E. L. Scott, Green Chem., 2017, 19, 5178 DOI: 10.1039/C7GC02137B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements