Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 23, 2016

Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition

Author affiliations

Abstract

This work explores the combined effects of thermal pretreatment and using a catalyst in situ on gasification carbon conversion efficiency, as well as product gas and tar content and compositions. To compare the effects of thermal pretreatment, pelletized and ground oak with three different levels of thermal pretreatment were gasified in a fluidized bed reactor. The pretreatments applied to the oak were (1) pelletization, (2) drying at 180 °C in air, and (3) torrefaction at 270 °C in nitrogen. The oak dried at 180 °C produced syngas of similar quality and approximately the same amount of char as untreated oak. Torrefaction at 270 °C resulted in syngas with a higher hydrogen to CO ratio, lower methane, and less than half of the total tar—all of which are desirable properties in terms of product gas quality. However, the oak torrefied at 270 °C also produced more than two times the amount of char as the untreated, pelletized oak. To determine the effect of catalyst, a series of experiments were conducted using olivine impregnated with nickel and cerium as the fluidized bed material in the gasifier. These tests showed that modified olivine can improve hydrogen production and reduce methane and tar levels in the syngas. The result was observed for both treated and untreated oak; although the effect was more substantial for untreated oak, for which the use of modified olivine reduced tar concentrations in the product gas by 60%, with a larger reduction in heavier tars than lighter tars. This result is important because reduction in heavier tar plays a more important role in benefitting downstream operations.

Graphical abstract: Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition

Supplementary files

Article information


Submitted
17 Jun 2016
Accepted
08 Sep 2016
First published
16 Sep 2016

Green Chem., 2016,18, 6291-6304
Article type
Paper
Author version available

Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition

S. Cheah, W. S. Jablonski, J. L. Olstad, D. L. Carpenter, K. D. Barthelemy, D. J. Robichaud, J. C. Andrews, S. K. Black, M. D. Oddo and T. L. Westover, Green Chem., 2016, 18, 6291 DOI: 10.1039/C6GC01661H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements