Issue 19, 2016

Hydrolytic degradation of ROMP thermosetting materials catalysed by bio-derived acids and enzymes: from networks to linear materials

Abstract

This paper reports the first example of degradable ROMP thermosetting materials catalysed by bio-derived acids and cutinase from Thermobifida cellulosilytica (Thc_Cut1). The ROMP thermosetting materials are based on norbornene dicarboximides containing acetal ester groups only in the crosslinking moiety. The insoluble cross-linked materials were subjected to acid-catalysed hydrolysis using bio-derived acetic and citric acids as well as enzymatic degradation using Thc_Cut1, resulting in the materials becoming completely soluble in dichloromethane. 1H NMR and rheological analysis performed on materials after acid-catalysed hydrolysis showed characteristics indistinguishable to those of the linear polymer analogues. These analyses confirmed the cleavage of the crosslinking moiety upon degradation with the main backbone chains remaining intact. The glass transition temperatures of the polymer materials after acid-catalysed hydrolysis were the same as those observed for the linear polymer analogues. TGA showed that the cross-linked polymers were thermally stable to 150 °C, beyond which they showed weight losses due to the thermal cleavage of the acetal ester linkages.

Graphical abstract: Hydrolytic degradation of ROMP thermosetting materials catalysed by bio-derived acids and enzymes: from networks to linear materials

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2016
Accepted
07 Jun 2016
First published
22 Jun 2016

Green Chem., 2016,18, 5190-5199

Hydrolytic degradation of ROMP thermosetting materials catalysed by bio-derived acids and enzymes: from networks to linear materials

S. Hou, D. M. Hoyle, C. J. Blackwell, K. Haernvall, V. Perz, G. M. Guebitz and E. Khosravi, Green Chem., 2016, 18, 5190 DOI: 10.1039/C6GC00378H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements