Issue 8, 2016

Multifunctional β-amino alcohols as bio-based amine curing agents for the isocyanate- and phosgene-free synthesis of 100% bio-based polyhydroxyurethane thermosets

Abstract

The aminolysis of bio-based glycidylethers and limonene dioxide with aqueous ammonia represents a versatile one-step synthesis of multifunctional bio-based amine curing agents and does not require either organic solvents besides bioethanol or tedious purification. Moreover, the identical bio-based glycidylether serves as the raw material for both the amine curing agent and the polyfunctional cyclic carbonate, both of which are key intermediates in non-isocyanate polyhydroxyurethane (NIPU) production. This study elucidates the influences of molecular architecture and amine content of multifunctional β-amino alcohol (AA) curing agents, as determined by means of 13C-NMR spectroscopy, and the type of polyfunctional cyclic carbonates on the thermal and mechanical NIPU properties, NIPU degradation and NIPU solvent swelling. Preferably, owing to their rather high viscosities, polyfunctional AAs are blended together with hexamethylene diamine (HMDA) to enable facile NIPU cure at ambient temperatures. As compared to HMDA, the addition of the less reactive polyfunctional AAs increases gel time, as measured by oscillatory rheological experiments, and simultaneously improves NIPU stiffness, as determined by Young's modulus (+200%).

Graphical abstract: Multifunctional β-amino alcohols as bio-based amine curing agents for the isocyanate- and phosgene-free synthesis of 100% bio-based polyhydroxyurethane thermosets

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2015
Accepted
08 Dec 2015
First published
08 Dec 2015

Green Chem., 2016,18, 2406-2415

Author version available

Multifunctional β-amino alcohols as bio-based amine curing agents for the isocyanate- and phosgene-free synthesis of 100% bio-based polyhydroxyurethane thermosets

H. Blattmann and R. Mülhaupt, Green Chem., 2016, 18, 2406 DOI: 10.1039/C5GC02563J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements