Jump to main content
Jump to site search

Issue 6, 2015
Previous Article Next Article

Deoxygenation of biobased molecules by decarboxylation and decarbonylation – a review on the role of heterogeneous, homogeneous and bio-catalysis

Author affiliations

Abstract

Use of biomass is crucial for a sustainable supply of chemicals and fuels for future generations. Compared to fossil feedstocks, biomass is more functionalized and requires defunctionalisation to make it suitable for use. Deoxygenation is an important method of defunctionalisation. While thermal deoxygenation is possible, high energy input and lower reaction selectivity makes it less suitable for producing the desired chemicals and fuels. Catalytic deoxygenation is more successful by lowering the activation energy of the reaction, and when designed correctly, is more selective. Catalytic deoxygenation can be performed in various ways. Here we focus on decarboxylation and decarbonylation. There are several classes of catalysts: heterogeneous, homogeneous, bio- and organocatalysts and all have limitations. Homogeneous catalysts generally have superior selectivity and specificity but separation from the reaction is cumbersome. Heterogeneous catalysts are more readily isolated and can be utilised at high temperatures, however they have lower selectivity in complex reaction mixtures. While bio-catalysts can operate at ambient temperatures, the volumetric productivity is lower. Therefore it is not always apparent in advance which catalyst is the most suitable in terms of conversion and selectivity under optimal process conditions. Here we compare classes of catalysts for the decarboxylation and decarbonylation of biobased molecules and discuss their limitations and advantages. We mainly focus on the activity of the catalysts and find there is a strong correlation between specific activity (turn over frequency) and temperature for metal based catalysts (homogeneous or heterogeneous). Thus one is not more active than the other at the same temperature. Alternatively, enzymes have a higher turnover frequency but drawbacks (low volumetric productivity) should be overcome.

Graphical abstract: Deoxygenation of biobased molecules by decarboxylation and decarbonylation – a review on the role of heterogeneous, homogeneous and bio-catalysis

Back to tab navigation

Publication details

The article was received on 05 Jan 2015, accepted on 18 Mar 2015 and first published on 09 Apr 2015


Article type: Perspective
DOI: 10.1039/C5GC00023H
Green Chem., 2015,17, 3231-3250
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Deoxygenation of biobased molecules by decarboxylation and decarbonylation – a review on the role of heterogeneous, homogeneous and bio-catalysis

    G. J. S. Dawes, E. L. Scott, J. Le Nôtre, J. P. M. Sanders and J. H. Bitter, Green Chem., 2015, 17, 3231
    DOI: 10.1039/C5GC00023H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements