Issue 5, 2012

Dihydroxylation of olefins catalyzed by zeolite-confined osmium(0) nanoclusters: an efficient and reusable method for the preparation of 1,2-cis-diols

Abstract

Addressed herein is a novel, eco-friendly, recoverable, reusable and bottleable catalytic system developed for the dihydroxylation of various olefins yielding 1,2-cis-diols. In our protocol, zeolite-confined osmium(0) nanoclusters (zeolite-Os0) are used as reusable catalyst and H2O2 served as a co-oxidant. Zeolite-Os0 are found to be highly efficient and selective catalysts for the dihydroxylation of a wide range olefins in an aqueous acetone mixture at room temperature. In all of the olefins surveyed, the catalytic dihydroxylation reaction proceeds smoothly and the corresponding 1,2-cis-diols are obtained in excellent chemical yield under the optimized conditions. The present heterogeneous catalyst system provides many advantages, such as being eco-friendly and industrially applicable over the traditional homogenous OsO4–NMO system for the dihydroxylation of olefins.

Graphical abstract: Dihydroxylation of olefins catalyzed by zeolite-confined osmium(0) nanoclusters: an efficient and reusable method for the preparation of 1,2-cis-diols

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2011
Accepted
13 Mar 2012
First published
30 Mar 2012

Green Chem., 2012,14, 1488-1492

Dihydroxylation of olefins catalyzed by zeolite-confined osmium(0) nanoclusters: an efficient and reusable method for the preparation of 1,2-cis-diols

Ö. Metin, N. A. Alp, S. Akbayrak, A. Biçer, M. S. Gültekin, S. Özkar and U. Bozkaya, Green Chem., 2012, 14, 1488 DOI: 10.1039/C2GC16616J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements