Issue 22, 1997

Optimisation of carbon cluster geometry using a genetic algorithm

Abstract

A genetic algorithm (GA) based global optimisation procedure has been developed and used to find the most stable configurations of small carbon clusters. The GA attempts to locate the set of atomic nuclei coordinates associated with the global minimum of the potential-energy function using an analogy to Darwinian natural selection. This algorithm uses a novel encoding scheme to evolve a population of cluster geometries towards a low-energy final state. Two semi-empirical many-body potential-energy functions have been encoded for carbon interactions. The binding energies and structural forms of carbon clusters between C3 and C60 are reported. It has been shown that the algorithm can determine structures with a lower energy than those previously published using more classical local optimisation procedures. The GA can also be used to predict the global minimal energy configuration of pairwise interaction potentials.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1997,93, 3919-3926

Optimisation of carbon cluster geometry using a genetic algorithm

S. Hobday and A. Roger Smith, J. Chem. Soc., Faraday Trans., 1997, 93, 3919 DOI: 10.1039/A702961F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements