Issue 9, 2021

Schisandra chinensis protects against dopaminergic neuronal oxidative stress, neuroinflammation and apoptosis via the BDNF/Nrf2/NF-κB pathway in 6-OHDA-induced Parkinson's disease mice

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by a disorder of both the motor and nonmotor systems due to a loss of dopaminergic (DA) neurons. Herein, we aimed to investigate the potential neuroprotective role of Schisandra chinensis (Sch) and to determine the mechanism by which Sch functions to ameliorate PD in a 6-hydroxydopamin (6-OHDA)-induced PD model. The open field test, sucrose preference test, and Y-maze test were utilized to evaluate the motor and nonmotor symptoms. We found that administration of Sch improved both disorders and DA neurodegeneration in 6-OHDA-induced mice. Additional data confirmed that Sch treatment significantly increased BDNF expression and decreased the activity of GSK-3β in the striatum and hippocampus. Moreover, Sch was able to alleviate the abnormal levels of ROS and increase SOD by boosting Nrf2 expression. The nuclear translocation of NF-κB was inhibited by Sch, which subsequently led to a downregulation of proinflammatory cytokines. Sch effectively suppressed apoptosis by decreasing expressions of caspase 3, caspase 9, and p53 in the PD mouse model. Our findings demonstrate that Sch protects against DA neurodegeneration in 6-OHDA-induced PD mice by suppressing oxidative stress, neuroinflammation and apoptosis through the involvement of the BDNF/Nrf2/NF-κB signaling pathway.

Graphical abstract: Schisandra chinensis protects against dopaminergic neuronal oxidative stress, neuroinflammation and apoptosis via the BDNF/Nrf2/NF-κB pathway in 6-OHDA-induced Parkinson's disease mice

Article information

Article type
Paper
Submitted
29 Oct 2020
Accepted
18 Mar 2021
First published
18 Mar 2021

Food Funct., 2021,12, 4079-4091

Schisandra chinensis protects against dopaminergic neuronal oxidative stress, neuroinflammation and apoptosis via the BDNF/Nrf2/NF-κB pathway in 6-OHDA-induced Parkinson's disease mice

T. Yan, Q. Mao, X. Zhang, B. Wu, K. Bi, B. He and Y. Jia, Food Funct., 2021, 12, 4079 DOI: 10.1039/D0FO02836C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements