Issue 9, 2016

β-Secretase (BACE1) inhibitory and neuroprotective effects of p-terphenyls from Polyozellus multiplex

Abstract

Alzheimer's disease (AD), a major neurodegenerative disorder, is associated with the enzymatic reaction of β-secretase (BACE1) on the amyloid precursor protein (APP) for the generation of neurotoxic amyloid-β (Aβ). Therefore, Aβ accumulation and oxidative stress-induced neuronal cell death are the pathogenic hallmarks of AD. In this study, we tried to identify BACE1 inhibitors and neuroprotectants from natural products, in particular, from the Korean mushroom Polyozellus multiplex. Four p-terphenyls were identified from the ethanolic extract of P. multiplex; polyozellin (1), thelephoric acid (2), polyozellic acid (3), and kynapcin-12 (4). Compounds 1–4 effectively inhibited BACE1 activity with a half-maximal inhibitory concentration (IC50) of 3.08, 3.50, 4.78, and 15.79 μM, respectively. Compounds 1–3 reduced the production of neurotoxic Aβ1-42 production in APPswe-N2a cells in a concentration-dependent manner. When HT22 cells were stressed with 5 mM glutamate, compounds 2 and 3 significantly recovered cell viability. It was correlated with their inhibitory properties against glutamate-mediated Ca2+ influx, intracellular reactive oxygen species (ROS) generation, lipid peroxidation, reduction in Bcl-2 and Bid levels, and enhanced phosphorylation of mitogen-activated protein kinase (MAPK). Thus, P. multiplex and the isolated p-terphenyls might be useful in the development of lead compounds for the prevention of neurodegenerative diseases, especially AD.

Graphical abstract: β-Secretase (BACE1) inhibitory and neuroprotective effects of p-terphenyls from Polyozellus multiplex

Article information

Article type
Paper
Submitted
16 Apr 2016
Accepted
28 Jul 2016
First published
29 Jul 2016

Food Funct., 2016,7, 3834-3842

β-Secretase (BACE1) inhibitory and neuroprotective effects of p-terphenyls from Polyozellus multiplex

S. Chon, E. Yang, T. Lee and K. Song, Food Funct., 2016, 7, 3834 DOI: 10.1039/C6FO00538A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements