Issue 11, 2014

An in vitro rat model of colonic motility to determine the effect of β-casomorphin-5 on propagating contractions

Abstract

Beta-casomorphin-5 (βCM-5) is a milk-derived bioactive peptide that slows gastro-intestinal transit (GIT) in vivo and blocks the peristaltic reflex in the guinea pig colon in vitro. We wanted to establish an in vitro model system in which effects of dairy-derived substances containing opioid peptides on intestinal motility can be assessed and used to predict in vivo outcomes. Because βCM-5 is an opioid agonist that acts on enteric neurons, we used this substance to compare two different isolated colonic tissue preparations to determine which would more closely mimic the in vivo response previously reported in the literature. We compared and characterized the effects of βCM-5 on spontaneous contractions in isolated segments of distal colon (1 cm length) compared with propagating contractions along the isolated intact large intestine (22 cm length). In short segments of distal colon, βCM-5 increased the tension and frequency of spontaneous contractions in a concentration-dependent manner. At 20 μM βCM-5 tension increased by 71 ± 17% and the frequency doubled (n = 9), effects inhibited by naloxone (n = 7) and therefore mediated by opioid receptors. In contrast 20 μM βCM-5 disrupted propagating contractions in the large intestine preparation. At 20 μM βCM-5 reduced the proportion of contractions initiated in the proximal colon reaching the rectum by 83 ± 11% (n = 5) and this effect was also inhibited by naloxone, consistent with altered GIT reported in vivo. Our results demonstrate that the isolated whole large intestine provides an ideal preparation that mimics the reduced propagation of GIT in vivo in response to an opioid agonist, whereas short colon segments did not. The findings of the current study reveal that preserving large segments of intact large intestine, and hence intact enteric neural circuitry provides an ideal in vitro model to investigate the effect of opioid receptor modulators on intestinal transit.

Graphical abstract: An in vitro rat model of colonic motility to determine the effect of β-casomorphin-5 on propagating contractions

Article information

Article type
Paper
Submitted
07 Mar 2014
Accepted
19 Jul 2014
First published
23 Jul 2014

Food Funct., 2014,5, 2768-2774

Author version available

An in vitro rat model of colonic motility to determine the effect of β-casomorphin-5 on propagating contractions

J. E. Dalziel, N. J. Spencer, K. E. Dunstan, A. T. Lynch, N. W. Haggarty, P. K. Gopal and N. C. Roy, Food Funct., 2014, 5, 2768 DOI: 10.1039/C4FO00193A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements