Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 12, 2012

Dietary polyphenol-derived protection against neurotoxic β-amyloid protein: from molecular to clinical

Author affiliations

Abstract

Polyphenolic compounds derived mainly from plant products have demonstrated neuroprotective properties in a number of experimental settings. Such protective effects have often been ascribed to antioxidant capacity, but specific augmentation of other cellular defences and direct interactions with neurotoxic proteins have also been demonstrated. With an emphasis on neurodegenerative conditions, such as Alzheimer's disease, we highlight recent findings on the neuroprotection ascribed to bioactive polyphenols capable of directly interfering with the Alzheimer's disease hallmark toxic β-amyloid protein (Aβ), thereby inhibiting fibril and aggregate formation. This includes compounds such as the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) and the phytoalexin resveratrol. Targeted studies on the biomolecular interactions between dietary polyphenolics and Aβ have not only improved our understanding of the pathogenic role of β-amyloid, but also offer fundamentally novel treatment options for Alzheimer's disease and potentially other amyloidoses.

Graphical abstract: Dietary polyphenol-derived protection against neurotoxic β-amyloid protein: from molecular to clinical

Article information


Submitted
28 Mar 2012
Accepted
11 Jul 2012
First published
24 Aug 2012

Food Funct., 2012,3, 1242-1250
Article type
Review Article

Dietary polyphenol-derived protection against neurotoxic β-amyloid protein: from molecular to clinical

S. D. Smid, J. L. Maag and I. F. Musgrave, Food Funct., 2012, 3, 1242 DOI: 10.1039/C2FO30075C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements