Volume 168, 2014

Diffusion of atomic oxygen relevant to water formation in amorphous interstellar ices

Abstract

Molecular dynamics (MD) simulations together with accurate physics-based force fields are employed to determine the mobility of atomic oxygen in amorphous ice at low temperatures, characteristic for conditions in interstellar ices. From the simulations it is found that the mobility of atomic oxygen ranges from 60 to 480 Å2 ns−1 in amorphous ice at temperatures between 50 and 200 K. Hence, the simulations establish that atomic oxygen is mobile to a certain degree and a chemical mechanism for water formation involving oxygen mobility is a realistic scenario. This is also confirmed by the computed migration barriers for oxygen diffusion by multiple umbrella sampling simulations, which yield barriers for diffusion in the range of 0.7–1.9 kcal mol−1. The physics-based force field – based on a multipolar expansion of the electrostatic interactions – yields more pronounced energetics for oxygen migration pathways compared to the conventional point-charge models employed in typical simulations. Once formed, the computed solvation free energy suggests that atomic oxygen thermodynamically prefers to be localized inside amorphous ice and is available for chemical reaction, which may be relevant to water formation in and on grains.

Article information

Article type
Paper
Submitted
24 Dec 2013
Accepted
11 Feb 2014
First published
11 Feb 2014

Faraday Discuss., 2014,168, 205-222

Author version available

Diffusion of atomic oxygen relevant to water formation in amorphous interstellar ices

M. W. Lee and M. Meuwly, Faraday Discuss., 2014, 168, 205 DOI: 10.1039/C3FD00160A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements