Volume 144, 2010

Multi-scale simulation of asphaltene aggregation and deposition in capillary flow

Abstract

Asphaltenes are known as the ‘cholesterol’ of crude oil. They form nano-aggregates, precipitate, adhere to surfaces, block rock pores and may alter the wetting characteristics of mineral surfaces within the reservoir, hindering oil recovery efficiency. Despite a significant research effort, the structure, aggregation and deposition of asphaltenes under flowing conditions remain poorly understood. For this reason, we have investigated asphaltenes, their aggregation and their deposition in capillary flow using multi-scale simulations and experiments. At the colloid scale, we use a hybrid simulation approach: for the solvent, we used the stochastic rotation dynamics (also known as multi particle collision dynamics) simulation method, which provides both hydrodynamics and Brownian motion. This is coupled to a coarse-grained MD approach for the asphaltene colloids. The colloids interact through a screened Coulomb potential with varying well depth ε. We tune the flow rate to obtain Peflow ≫ 1 (hydrodynamic interactions dominate) and Re ≪ 1 (Stokes flow). Imposing a constant pressure drop over the capillary length, we observe that the transient solvent flow rate decreases with increasing well depth ε. The interactions between the mesoscopic asphaltene colloids can be related to atomistic MD simulations. Molecular structures for the atomistic calculations were obtained using the quantitative molecular representation approach. Using these structures, we calculate the potential of mean force (PMF) between pairs of asphaltene molecules in an explicit solvent. We obtain a reasonable fit using a −1/r2 attraction for the attractive tail of the PMF at intermediate distances. We speculate that this is due to the two-dimensional nature of the asphaltene molecules. Finally, we discuss how we can relate this interaction to the mesoscopic colloid aggregate interaction. We assume that the colloidal aggregates consist of nano-aggregates. Taking into account observed solvent entrainment effects, we deduct the presence of lubrication layers between the nano-aggregates, which leads to a significant screening of the direct asphaltene–asphaltene interactions.

Article information

Article type
Paper
Submitted
03 Feb 2009
Accepted
12 Mar 2009
First published
26 Aug 2009

Faraday Discuss., 2010,144, 271-284

Multi-scale simulation of asphaltene aggregation and deposition in capillary flow

E. S. Boek, T. F. Headen and J. T. Padding, Faraday Discuss., 2010, 144, 271 DOI: 10.1039/B902305B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements