Volume 143, 2009

Rational design of peptide-based building blocks for nanoscience and synthetic biology

Abstract

The rational design of peptides that fold to form discrete nanoscale objects, and/or self-assemble into nanostructured materials is an exciting challenge. Such efforts test and extend our understanding of sequence-to-structure relationships in proteins, and potentially provide materials for applications in bionanotechnology. Over the past decade or so, rules for the folding and assembly of one particular protein-structure motif—the α-helical coiled coil—have advanced sufficiently to allow the confident design of novel peptides that fold to prescribed structures. Coiled coils are based on interacting α-helices, and guide and cement many proteinprotein interactions in nature. As such, they present excellent starting points for building complex objects and materials that span the nano-to-micron scales from the bottom up. Along with others, we have translated and extended our understanding of coiled-coil folding and assembly to develop novel peptide-based biomaterials. Herein, we outline briefly the rules for the folding and assembly of coiled-coil motifs, and describe how we have used them in de novo design of discrete nanoscale objects and soft synthetic biomaterials. Moreover, we describe how the approach can be extended to other small, independently folded protein motifs—such as zinc fingers and EF-hands—that could be incorporated into more complex, multi-component synthetic systems and new hybrid and responsive biomaterials.

Article information

Article type
Paper
Submitted
28 Jan 2009
Accepted
23 Mar 2009
First published
21 Jul 2009

Faraday Discuss., 2009,143, 305-317

Rational design of peptide-based building blocks for nanoscience and synthetic biology

C. T. Armstrong, A. L. Boyle, E. H. C. Bromley, Z. N. Mahmoud, L. Smith, A. R. Thomson and D. N. Woolfson, Faraday Discuss., 2009, 143, 305 DOI: 10.1039/B901610D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements