Volume 140, 2009

A comparative in situ195Pt electrochemical-NMR investigation of PtRu nanoparticles supported on diverse carbon nanomaterials

Abstract

This paper reports a detailed in situ195Pt electrochemical-nuclear magnetic resonance (EC-NMR) study of PtRu nanoparticles (NPs) that had a nominal atomic ratio of Pt : Ru = 1 : 1 and were supported on carbon nanocoils and carbon black (Vulcan XC-72) respectively. The particle sizes of the two samples were determined by X-ray diffraction using the Sherrer equation: 3.6 nm for the former and 3.2 nm for the latter, which were further corroborated by transmission electron microscope measurements. By taking advantage of a unique correlation between the spectral frequency of the 195Pt NMR resonance and the radial atomic position in a particle, qualitatively- and spatially-resolved local Pt atomic fractions in the particles were deduced by using a Ruderman–Kittel–Kasuya–Yosida (RKKY) J-coupling-based method as a function of different electrode potentials. The results indicated that both samples had Pt-enriched cores and Pt-deprived surfaces and, most importantly, the local Pt concentration varied as the electrochemical environment changed. The spatially-resolved Fermi level local densities of states (Ef-LDOS), which are a measure of the electronic frontier orbitals in metals, were deduced across the NMR spectrum and correlated with the EC activity in methanol electro-oxidation. The results were also compared to those obtained previously from Pt/Ru NPs supported respectively on carbon and graphite nanofibers.

Article information

Article type
Paper
Submitted
21 Feb 2008
Accepted
02 May 2008
First published
15 Sep 2008

Faraday Discuss., 2009,140, 139-153

A comparative in situ195Pt electrochemical-NMR investigation of PtRu nanoparticles supported on diverse carbon nanomaterials

F. Tan, B. Du, A. L. Danberry, I. Park, Y. Sung and Y. Tong, Faraday Discuss., 2009, 140, 139 DOI: 10.1039/B803073A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements