Volume 128, 2005

Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers

Abstract

The crystallization kinetics of each constituent of poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers (PPDX-b-PCL) has been determined in a wide composition range by differential scanning calorimetry and compared to that of the equivalent homopolymers. Spherulitic growth rates were also measured by polarized optical microscopy while atomic force microscopy was employed to reveal the morphology of one selected diblock copolymer. It was found that crystallization drives structure formation and both components form lamellae within mixed spherulitic superstructures. The overall isothermal crystallization kinetics of the PPDX block at high temperatures, where the PCL is molten, was determined by accelerating the kinetics through a previous self-nucleation procedure. The application of the Lauritzen and Hoffman theory to overall growth rate data yielded successful results for PPDX and the diblock copolymers. The theory was applied to isothermal overall crystallization of previously self-nucleated PPDX (where growth should be the dominant factor if self-nucleation was effective) and the energetic parameters obtained were perfectly matched with those obtained from spherulitic growth rate data of neat PPDX. A quantitative estimate of the increase in the energy barrier for crystallization of the PPDX block, caused by the covalently bonded molten PCL as compared to homo-PPDX, was thus determined. This energy increase can dramatically reduce the crystallization rate of the PPDX block as compared to homo-PPDX. In the case of the PCL block, both the crystallization kinetics and the self-nucleation results indicate that the PPDX is able to nucleate the PCL within the copolymers and heterogeneous nucleation is always present regardless of composition. Finally, preliminary results on hydrolytic degradation showed that the presence of relatively small amounts of PCL within PPDX-b-PCL copolymers substantially retards hydrolytic degradation of the material in comparison to homo-PPDX. This increased resistance to hydrolysis is a complex function of composition and its knowledge may allow future prediction of the lifetime of the material for biomedical applications.

Article information

Article type
Paper
Submitted
01 Mar 2004
Accepted
04 Apr 2004
First published
17 Aug 2004

Faraday Discuss., 2005,128, 231-252

Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers

A. J. Müller, J. Albuerne, L. Marquez, J. Raquez, P. Degée, P. Dubois, J. Hobbs and I. W. Hamley, Faraday Discuss., 2005, 128, 231 DOI: 10.1039/B403085K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements