Volume 122, 2003

Achieving photo-control of protein conformation and activity: producing a photo-controlled leucine zipper

Abstract

We have recently developed a technique that has great potential in producing proteins with photo-control of conformation and consequently activity (J. R. Kumita, O. S. Smart and G. A. Woolley, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 3803–3808). The method is based on incorporating two cysteine residues into the sequence of a polypeptide. An azobenzene derivative is subsequently used to produce an intramolecular cross-link between the cysteine sulfhydryl groups. In previous work photo-isomerisation of the azobenzene moiety has been used to control the helicity of a monomeric peptide. In the experiments described here this method has been applied to the coiled coil leucine zipper peptide GCN4-p1. The aim was to produce a variant of GCN4-p1 whose helicity and consequently dimerisation is under direct photo-control. We have produced a modified GCN4-p1 incorporating two cysteine residues. The mutations introduced are shown to interfere with the ability of the uncross-linked peptide to form a coiled coil. After the peptide was cross-linked with the azobenzene derivative more normal coiled-coil behaviour was restored. Irradiation of the peptide producing a conformational change in the azobenzene cross-linker was accompanied by an increase in the helicity of the peptide. The work presented here highlights the potential of the use of photo-isomerisable cross-linkers to control protein activity through induced conformational change. In addition, the methodology has the potential to provide a fast trigger for the initiation of protein conformational changes.

Article information

Article type
Paper
Submitted
24 Jan 2002
Accepted
01 Mar 2002
First published
17 Jul 2002

Faraday Discuss., 2003,122, 89-103

Achieving photo-control of protein conformation and activity: producing a photo-controlled leucine zipper

J. R. Kumita, D. G. Flint, G. A. Woolley and O. S. Smart, Faraday Discuss., 2003, 122, 89 DOI: 10.1039/B200897A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements