Volume 112, 1999

Dynamics of a drop at a liquid/solid interface in simple shear fields: A mesoscopic simulation study

Abstract

The dynamics of a surface-confined drop in a simple shear field has been studied, pursuing the dissipative particle dynamics (DPD) simulation approach. The shear field induces contact angle hysteresis in the drop, the degree of hysteresis increasing with the shear rate. At shear rates exceeding a critical value, the drop acquires the tendency to lift off the boundary, leading to its removal. In the equilibrium contact angle range, ϑe>120°, the drop preserves its integrity as it escapes from the boundary, whereas at lower contact angles the drop assumes a distinctly elongated shape prior to its removal, which develops “necks’' at subsequent times. The drop breaks up as the necks are ruptured upon thinning, with some fragments escaping into the bulk phase and some remaining at the surface. Under certain hydrodynamic conditions the moving drop sheds a trail of tiny droplets on the surface. The simulation results are in qualitative agreement with experimental studies on the corresponding systems published in the literature.

Supplementary files

Article information

Article type
Paper

Faraday Discuss., 1999,112, 129-142

Dynamics of a drop at a liquid/solid interface in simple shear fields: A mesoscopic simulation study

J. L. Jones, M. Lal, J. Noel Ruddock and N. A. Spenley, Faraday Discuss., 1999, 112, 129 DOI: 10.1039/A901273G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements