Volume 112, 1999

Phase coexistence of complex fluids in shear flow

Abstract

We present some results of recent calculations of rigid rod-like particles in shear flow, based on the Doi model. This is an ideal model system for exhibiting the generic behavior of shear-thinning fluids (polymer solutions, wormlike micelles, surfactant solutions, liquid crystals) in shear flow. We present calculations of phase coexistence under shear among weakly-aligned (paranematic) and strongly-aligned phases, including alignment in the shear plane and in the vorticity direction (log-rolling). Phase coexistence is possible, in principle, under conditions of both common shear stress and common strain rate, corresponding to different orientations of the interface between phases. We discuss arguments for resolving this degeneracy. Calculation of phase coexistence relies on the presence of inhomogeneous terms in the dynamical equations of motion, which select the appropriate pair of coexisting states. We cast this condition in terms of an equivalent dynamical system, and explore some aspects of how this differs from equilibrium phase coexistence.

Article information

Article type
Paper

Faraday Discuss., 1999,112, 183-194

Phase coexistence of complex fluids in shear flow

P. D. Olmsted and C-Y. David Lu, Faraday Discuss., 1999, 112, 183 DOI: 10.1039/A900245F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements