Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 2, 2019
Previous Article Next Article

Enhanced antibiotic removal through a dual-reaction-center Fenton-like process in 3D graphene based hydrogels

Author affiliations

Abstract

Considerable attention has been paid to water treatment using nanomaterials. In this study, ethylene glycol (EG) is used to control the formation of α-FeOOH/reduced graphene oxide (RGO) hydrogels in a facile way. The EG-promoted α-FeOOH/RGO hydrogels exhibit higher moisture content, more porous structure, lower agglomeration, larger swelling, higher specific area, more defects in graphene sheets, stronger Fe–O–C bonds, and higher roughness than those without modification. More importantly and interestingly, we found for the first time that the α-FeOOH/RGO hydrogels could generate reactive oxygen species (ROS) without the addition of H2O2, and this property is also enhanced in EG-promoted hydrogels due to (i) the increase in defects in graphene sheets leading to enhanced oxygen reduction reaction (ORR) and (ii) the strengthening of Fe–O–C bonds relating to dual reaction centers with stronger generation of ˙OH. In tetracycline degradation from water, the increase in electron density disparity in the material and the promoted role of tetracycline as an electron donor are proved to be the main reasons for the enhanced tetracycline removal from aqueous solution. Results obtained through density functional theory (DFT) indicate that the electrons could be transferred from the N area in tetracycline to the Fe area in the material, based on which we found a special π–π interaction (between tetracycline and graphene) coupled with π–Fe interactions (between graphene and α-FeOOH) as an efficient pollutant removal method. Our findings provide a simple strategy for the structure improvement of environmental nanomaterials and enrich their mechanism studies.

Graphical abstract: Enhanced antibiotic removal through a dual-reaction-center Fenton-like process in 3D graphene based hydrogels

Back to tab navigation

Supplementary files

Article information


Submitted
28 Nov 2018
Accepted
04 Jan 2019
First published
04 Jan 2019

Environ. Sci.: Nano, 2019,6, 388-398
Article type
Paper

Enhanced antibiotic removal through a dual-reaction-center Fenton-like process in 3D graphene based hydrogels

Y. Zhuang, Q. Liu, Y. Kong, C. Shen, H. Hao, D. D. Dionysiou and B. Shi, Environ. Sci.: Nano, 2019, 6, 388
DOI: 10.1039/C8EN01339J

Social activity

Search articles by author

Spotlight

Advertisements