Issue 2, 2015

Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies

Abstract

Anthropogenic nanomaterials (ANMs), once produced, will inevitably be present in the environment. Depending on their environmental stability and level of toxicity, ANMs raise some concern regarding their potential impact on the surrounding animal, aquatic and plant life. In this study, we demonstrate for the first time the effect of ultra-small size (<5 nm) semiconductor ANMs on the germination and growth of seeds of a snow pea model plant system (Pisum sativum) using a N-acetyl cysteine (NAC) coated core–shell CdS:Mn/ZnS Qdots as a heavy metal ion containing model ANM. We present combined results of fluorescence confocal, atomic force microscopy (AFM) and Raman imaging of quantum dot (Qdot) to track the uptake and localization (translocation) in plant tissue. It was found that Qdots were localized on the surface seed coat, epidermis and intercellular regions. The germination, growth and chlorophyll content of the seedlings were found to be strongly dependent on Qdot dosage and time of seed incubation with Qdots. Interestingly, no acute Cd metal toxicity was observed at Qdot concentration below 40 μg mL−1, and seed germination and growth processes were promoted.

Graphical abstract: Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies

Supplementary files

Article information

Article type
Paper
Submitted
05 Dec 2014
Accepted
04 Feb 2015
First published
05 Feb 2015

Environ. Sci.: Nano, 2015,2, 203-212

Author version available

Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies

S. Das, B. P. Wolfson, L. Tetard, J. Tharkur, J. Bazata and S. Santra, Environ. Sci.: Nano, 2015, 2, 203 DOI: 10.1039/C4EN00198B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements