Issue 12, 2017

Nitrification in a soil-aquifer treatment system: comparison of potential nitrification and concentration profiles in the vadose zone

Abstract

The oxidation of ammonium in the vadose zone of soil aquifer systems is discussed and examined by detailed analysis of the depth profiles of dissolved oxygen, nitrate and ammonium concentrations in the vadose zone of a soil-aquifer treatment (SAT) system of a municipal wastewater treatment system of the Tel Aviv metropolitan area. Nitrification kinetics and ammonium adsorption capacity studies show that neither the nitrification rate nor the ammonium adsorption capacity controls the capacity of the Shafdan SAT system for ammonium removal. Evaluation of the ammonium adsorption capacity of the soil reveals that under ideal conditions, a depth of less than 50 cm is sufficient to adsorb all the ammonium supplied in a flooding cycle. In-field studies show that all the ammonium is concentrated within the first 80 cm of the vadose zone. A depth profile of the Potential Nitrification (P.N), a measure of the local amount and activity of nitrifiers, is presented for the first time in the vadose zone of a SAT system showing that there are sufficient nitrifiers to oxidize all the ammonia that is supplied in a flooding cycle within less than 2 h, under optimal microbiological conditions based on the existing nitrifiers and their spatial distribution. The biodegradation rate in the field corresponds to first order ammonium conversion with a kinetic coefficient of 8.0 ± 0.2 d−1. Accordingly, the average measured rate was 8.6 ± 5.8 mg NH4+–N per kg per d for in-field tests, which can be compared to the average P.N, with a value of 34.5 ± 16.8 mg NH4+–N per kg per d. The results suggest that a SAT design, taking into account full ammonium removal capacity, is feasible and can rely on the evaluation of the ammonium adsorption capacity in the SAT soil, the ammonium input and the P.N of the equilibrated target soil under conditions simulating the operation of the infiltrating basins.

Graphical abstract: Nitrification in a soil-aquifer treatment system: comparison of potential nitrification and concentration profiles in the vadose zone

Supplementary files

Article information

Article type
Paper
Submitted
01 Sep 2017
Accepted
20 Nov 2017
First published
21 Nov 2017

Environ. Sci.: Processes Impacts, 2017,19, 1571-1582

Nitrification in a soil-aquifer treatment system: comparison of potential nitrification and concentration profiles in the vadose zone

A. Sopilniak, R. Elkayam and O. Lev, Environ. Sci.: Processes Impacts, 2017, 19, 1571 DOI: 10.1039/C7EM00402H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements