Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 12, 2013
Previous Article Next Article

Model-based exploration of the drivers of mountain cold-trapping in soil

Author affiliations

Abstract

A pollutant is said to undergo mountain cold-trapping if it is found at higher concentrations in a surface medium (soil, snow, foliage) high on a mountain, where it is colder, than in the same medium lower on the mountain. The processes that lead to mountain cold-trapping in soil were explored for a set of hypothetical Perfectly Persistent Pollutants (PPPs) by varying several environmental parameters in a fugacity based fate and transport box model. These parameters were: the spatial scale of the mountain; the rate and location of rain; the amount of particles in the atmosphere; the presence and magnitude of the upslope temperature gradient. The relative potential of each hypothetical PPP to exhibit mountain cold-trapping was expressed in terms of its Mountaintop Contamination Potential (MCP). The PPPs with the highest MCPs were those that neither were deposited from the atmosphere to the surface in the lower zones in the model nor left the model domain without being deposited at all. The simulations revealed that under most conditions wet-gaseous deposition is the biggest driver of mountain cold-trapping in soils, and its effects are greatly enhanced by large negative temperature gradients and increased precipitation upslope. Dry-gaseous and wet-and-dry-particle deposition processes cause similar PPPs to exhibit mountain cold-trapping, and the contributions to MCP by the dry processes are of the same magnitude as wet-particle deposition. Dry gaseous deposition alone is insufficient to cause mountain cold-trapping in soils under any conditions modelled here. Those measuring organic contaminants in mountains should expect to find that mountains with different climates cold-trap different pollutants, and that some mountains may not exhibit upslope enrichment of any species.

Graphical abstract: Model-based exploration of the drivers of mountain cold-trapping in soil

Back to tab navigation

Supplementary files

Article information


Submitted
19 Jul 2013
Accepted
08 Oct 2013
First published
08 Oct 2013

This article is Open Access

Environ. Sci.: Processes Impacts, 2013,15, 2220-2232
Article type
Paper

Model-based exploration of the drivers of mountain cold-trapping in soil

J. N. Westgate and F. Wania, Environ. Sci.: Processes Impacts, 2013, 15, 2220
DOI: 10.1039/C3EM00385J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements