Issue 2, 1999

Carbonate induced dissolution of uranium containing precipitates under cement leachate conditions

Abstract

The effects of carbonate on uranium (VI) solubility under aerobic and cementitious conditions have been investigated. The information is of relevance to low level nuclear waste disposal. Aqueous NaOH, KOH, Ca(OH) 2 and a cement leachate solution were added to uranyl nitrate solution. Afterwards, increasing amounts of ammonium carbonate were added to re-dissolve the precipitates. The precipitates were characterised by means of X-ray powder diffraction (XRPD) measurements and modelling studies. The model calculations were performed using the MINTEQA2 speciation code, with an expanded database incorporating uranium stability constants taken from the HATCHES database. The measured and predicted amounts of CO 3 2– needed to dissolve the precipitates were compared. The knowledge gained from the ‘pure’ systems was used to rationalise the precipitation and re-dissolution behaviour observed in the leachate system. The lack of uranium solubility at low carbonate levels brought into question literature formation constants for UO 2 (OH) 3 and UO 2 (OH) 4 2– . An approximate log K value of 26.8 for K 2 U 2 O 7 formation was estimated from the KOH results at pH 12. Generally, uranium solubilities are expected to be insignificant at low level nuclear waste sites because anaerobic conditions should persist. However, this study has demonstrated that solubility in leachate could rise at high pH and high carbonate levels, if aerobic conditions were to develop. Soluble U(VI) species would be formed. The novel part of the study has been to reproduce the effects and to correlate enhanced solubilities with model predictions. Consequently, the study has re-emphasised the need for appropriate environmental monitoring of such sites.

Article information

Article type
Paper

J. Environ. Monit., 1999,1, 177-182

Carbonate induced dissolution of uranium containing precipitates under cement leachate conditions

M. Sutton, P. Warwick, A. Hall and C. Jones, J. Environ. Monit., 1999, 1, 177 DOI: 10.1039/A809262A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements