Jump to main content
Jump to site search

Issue 9, 2020
Previous Article Next Article

Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production

Author affiliations

Abstract

Decarbonising ammonia production is an environmental imperative given that it independently accounts for 1.8% of global carbon dioxide emissions and supports the feeding of over 48% of the global population. The recent decline of production costs and its potential as an energy vector warrant investigation of whether green ammonia production is commercially competitive. Considering 534 locations in 70 countries and designing and operating the islanded production process to minimise the levelised cost of ammonia (LCOA) at each, we show the range of achievable LCOA, the cost of process flexibility, the components of LCOA, and therein the scope of LCOA reduction achievable at present and in 2030. These results are benchmarked against ammonia spot prices, cost per GJ of refined fuels and the LCOE of alternative energy storage methods. Currently a LCOA of $473 t−1 is achievable, at the best locations the required process flexibility increases the achievable LCOA by 56%; the electrolyser CAPEX and operation are the most significant costs. By 2030, $310 t−1 is predicted to be achievable with multiple locations below $350 t−1. At $25.4 GJ−1 currently and $16.6 GJ−1 by 2030 prior combustion, this compares favourably against other refined fuels such as kerosene ($8.7–18.3 GJ−1) that do not have the benefit of being carbon-free.

Graphical abstract: Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production

Back to tab navigation

Supplementary files

Article information


Submitted
28 May 2020
Accepted
13 Jul 2020
First published
13 Jul 2020

This article is Open Access

Energy Environ. Sci., 2020,13, 2957-2966
Article type
Paper

Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production

R. M. Nayak-Luke and R. Bañares-Alcántara, Energy Environ. Sci., 2020, 13, 2957
DOI: 10.1039/D0EE01707H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements