Jump to main content
Jump to site search

Issue 9, 2020
Previous Article Next Article

Predictable and targeted activation of biomass to carbons with high surface area density and enhanced methane storage capacity

Author affiliations

Abstract

A challenge in the synthesis of activated carbons is that currently there is no way to prepare materials with predictable and targeted properties. In particular, there are no material parameters or characteristics of the starting carbonaceous matter that can be used to predict the porosity and packing density of the activated carbon. Here we report on the synthesis of biomass-derived activated carbons with targeted porosity and packing density that is suitable for methane storage. We show that the ratio of elemental oxygen to elemental carbon (i.e., O/C atomic ratio) of the precursor can be used as a universal predictor of the nature of porosity generated in an activated carbon. We use date seeds (Phoenix dactylifera) as an example of how biomass starting material with a very low O/C ratio, along with choice of mode of carbonisation, can be used to synthesise activated carbons with optimised porosity, as defined by the surface area density, and high packing density that is suitable for methane storage. The carbons store up to 222 cm3 (STP) cm−3 methane at 25 °C and 35 bar, which is much higher than any value reported to date for porous carbons, and is comparable to the best metal–organic-framework (MOF). However, the activated carbons are much cheaper (≤1$ per kg) compared to at best 10–20$ per kg for MOFs. Our findings present important insights on directed synthesis of optimised activated carbons and represent a significant step in the development of cheap porous carbons for high volumetric methane (or natural gas) storage. The findings are also applicable to informing the optimised preparation of activated carbons with targeted properties for other applications in energy storage and environmental remediation.

Graphical abstract: Predictable and targeted activation of biomass to carbons with high surface area density and enhanced methane storage capacity

Back to tab navigation

Supplementary files

Article information


Submitted
28 Apr 2020
Accepted
20 Jul 2020
First published
21 Jul 2020

This article is Open Access

Energy Environ. Sci., 2020,13, 2967-2978
Article type
Paper

Predictable and targeted activation of biomass to carbons with high surface area density and enhanced methane storage capacity

A. Altwala and R. Mokaya, Energy Environ. Sci., 2020, 13, 2967
DOI: 10.1039/D0EE01340D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements