Issue 11, 2019

High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization

Abstract

Combining high thermoelectric (TE) performance, excellent mechanical properties, and good thermal stability, half-Heusler materials show great potential in real applications, such as industrial waste heat recovery. However, the materials synthesis technology developed in the laboratory scale environment cannot fulfil the requirements of massive device fabrication. In this work, a batch synthesis utilizing the self-propagating high-temperature synthesis (SHS) method was used to prepare state-of-the-art n-type Zr0.5Hf0.5NiSn0.985Sb0.015 and p-type Zr0.5Hf0.5CoSb0.8Sn0.2 half-Heusler alloys. Due to the nonequilibrium reaction process, dense dislocation arrays were introduced in both n-type and p-type materials, which greatly depressed the lattice thermal conductivity. As a consequence, the zT values of samples cut from ingots weighing a few hundreds of grams compared favorably with those prepared from few gram laboratory size pellets. Based on the high TE performance, a three-dimensional finite element model encompassing all relevant parameters was applied to optimize the topological structures of both a half-Heusler single-stage module and a half-Heusler/Bi2Te3 segmented module. The optimized modules attained record-high conversion efficiencies of 9.6% and 12.4% for the single-stage and the segmented module, respectively. The work documents a comprehensive processing of novel TE materials culminating in the assembly of efficient TE modules. As such, it paves the way for widespread commercial applications of TE power generation.

Graphical abstract: High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2019
Accepted
09 Oct 2019
First published
09 Oct 2019

Energy Environ. Sci., 2019,12, 3390-3399

High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization

Y. Xing, R. Liu, J. Liao, Q. Zhang, X. Xia, C. Wang, H. Huang, J. Chu, M. Gu, T. Zhu, C. Zhu, F. Xu, D. Yao, Y. Zeng, S. Bai, C. Uher and L. Chen, Energy Environ. Sci., 2019, 12, 3390 DOI: 10.1039/C9EE02228G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements