Jump to main content
Jump to site search

Issue 5, 2019
Previous Article Next Article

City-scale decarbonization experiments with integrated energy systems

Author affiliations

Abstract

Decarbonization of electricity generation together with electrification of energy-and-carbon-intensive services such as heating and cooling is needed to address ambitious climate goals. Here we show that city-scale electrification of heat with large-scale thermal storage also cost-effectively unlocks significant additional operational benefits for the power sector. We build an optimization model of fully electrified district heating and cooling networks integrated with other electric loads. We leverage real-world consumption and operational data from a first-of-a-kind facility that meets heating, cooling and electrical energy requirements equivalent to a city of 30 000 people. Using our model, we compute optimal operational strategies for the controllable loads and thermal storage in this system under different economic hypotheses. In our example, electrifying the previously gas-based heating and cooling infrastructure has led to a 65% reduction in the overall campus carbon footprint. Through least-cost scheduling, the load shape of the aggregate energy system can be flattened and annual peak power demand can be reduced by 15%. Through carbon-aware scheduling that takes advantage of variations in grid power carbon intensity, heating and cooling emissions could further decrease by over 40% in 2025 compared to the 2016 baseline, assuming a policy-compliant electricity mix for California. However, rethinking electricity rates based on peak power usage will be needed to make carbon-aware scheduling economically attractive.

Graphical abstract: City-scale decarbonization experiments with integrated energy systems

Back to tab navigation

Supplementary files

Article information


Submitted
20 Dec 2018
Accepted
27 Mar 2019
First published
29 Apr 2019

This article is Open Access

Energy Environ. Sci., 2019,12, 1695-1707
Article type
Paper

City-scale decarbonization experiments with integrated energy systems

J. A. de Chalendar, P. W. Glynn and S. M. Benson, Energy Environ. Sci., 2019, 12, 1695 DOI: 10.1039/C8EE03706J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements