Issue 3, 2018

Band engineering of multicomponent semiconductors: a general theoretical model on the anion group

Abstract

Development of energy conversion semiconductor materials has attracted increasing interest over the past three decades, but most successful semiconductors are unary or binary, rather than multicomponent semiconductors (MCSCs). There is a several orders of magnitude wider variety of MCSCs than unary and binary semiconductors, but very few electronic energy theories have been able to deal with more than two composition variables so far, and thus desired MCSCs are hard to predict. In this work, we propose a universal anion group model based on the analysis of electronic structures in an ABO3 perovskite prototype. Under a first order approximation, that is, the ‘A’ cation and the (BO6) anion group have very little hybridization, we find that the band gap of the ABO3 semiconductor is mainly determined by the (BO6) anion group and is very similar to that of binary compounds consisting of the same anion group constituents, while the band edges can be adjusted by the ‘A’-site cation. When more intense hybridizations exist, the predicted results can be amended by considering the higher order approximation. Using this model, the band gaps and edges of quaternary AgxNa(1−x)NbO3 perovskites and ZnxMg(1−x)Fe2O4 spinels have been predicted and are consistent with reported experiments and first principles calculations, further confirming the validity of the proposed model. Therefore, an anion group model on MCSCs can not only promote the probability of success in band engineering, but can also pave the way for speeding up the design of novel and desired MCSCs using known binary semiconductors for use in the field of energy conversion materials as photocatalysts, light-emitting materials, complementary light-absorption materials for solar cells, etc.

Graphical abstract: Band engineering of multicomponent semiconductors: a general theoretical model on the anion group

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2017
Accepted
06 Feb 2018
First published
06 Feb 2018

Energy Environ. Sci., 2018,11, 692-701

Band engineering of multicomponent semiconductors: a general theoretical model on the anion group

X. Y. Meng, D. Y. Liu and G. W. Qin, Energy Environ. Sci., 2018, 11, 692 DOI: 10.1039/C7EE03503A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements