Issue 10, 2016

Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage

Abstract

Metal–organic frameworks (MOFs) are porous materials synthesized by combining inorganic and organic molecular building blocks into crystalline networks of distinct topologies. Due to the combinatorial possibilities, there are millions of possible MOF structures. Aiming to exploit their exceptional tunability, surface areas and pore volumes, researchers have investigated MOFs for storage of gaseous fuels such as hydrogen for over a decade, but a suitable MOF to store hydrogen at ambient conditions has not yet been found. Here, we sought to rapidly determine the viability of using MOFs for hydrogen storage at recently proposed, cryogenic operating conditions. We constructed a large and structurally diverse set of 13 512 potential MOF structures based on 41 different topologies and used molecular simulation to determine MOF hydrogen deliverable capacities between 100 bar/77 K and 5 bar/160 K. The highest volumetric deliverable capacity was 57 g L−1 of MOF, which surpasses the 37 g L−1 of tank of the incumbent technology (compressing hydrogen to 700 bar at ambient temperature). To validate our in silico MOF construction method, we synthesized a new isoreticular family of MOFs (she-MOF-x series) based on the she topology, which is extremely rare among MOFs. To validate our hydrogen storage predictions, we activated and measured hydrogen adsorption on she-MOF-1 and NU-1103. The latter MOF showed outstanding stability and a good combination of volumetric and gravimetric performance, presenting 43.2 g L−1 of MOF and 12.6 wt% volumetric and gravimetric deliverable capacities, respectively.

Graphical abstract: Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2016
Accepted
09 Sep 2016
First published
09 Sep 2016

Energy Environ. Sci., 2016,9, 3279-3289

Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage

D. A. Gómez-Gualdrón, Y. J. Colón, X. Zhang, T. C. Wang, Y. Chen, J. T. Hupp, T. Yildirim, O. K. Farha, J. Zhang and R. Q. Snurr, Energy Environ. Sci., 2016, 9, 3279 DOI: 10.1039/C6EE02104B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements