Issue 10, 2014

Reply to the ‘comment on “$ per W metrics for thermoelectric power generation: beyond ZT”’ by G. Nunes, Jr, Energy Environ. Sci., 2014, 7, DOI: 10.1039/C3EE43700K

Abstract

The comment by Nunes suggests a welcome refinement to an approximation made in the original paper. We show here that Nunes' refinement is identical to a modified effective thermal conductivity, keff = k(1 + γZT), where k is the thermal conductivity, ZT is the usual material figure of merit, and γ is in the range 0.4–0.5. This form of keff was already identified in Section 3.3 of our original paper as an option to improve the accuracy of the calculations and is itself an approximation to the more sophisticated keff analysis of Baranowski, Snyder, and Toberer [J. Appl. Phys. 113, 204904 (2013)]. As noted by Nunes and ourselves, the main downside of such refinements is that they complicate the universality of the main result, the universal cost surface in Fig. 2 of the original paper. The simplified results in the original manuscript are justified and reasonable for ZT ∼ 1 or less, for physical insight, scaling, and rapid screening. For the best accuracy in real systems, exact numerical solutions of the coupled cost and power equations are most appropriate, examples of which we have recently published for 30 bulk and thin film materials in Renewable Sustainable Energy Rev., 32, 313–327, 2014.

Graphical abstract: Reply to the ‘comment on “$ per W metrics for thermoelectric power generation: beyond ZT”’ by G. Nunes, Jr, Energy Environ. Sci., 2014, 7, DOI: 10.1039/C3EE43700K

Associated articles

Article information

Article type
Comment
Submitted
09 Apr 2014
Accepted
06 Aug 2014
First published
11 Aug 2014

Energy Environ. Sci., 2014,7, 3441-3442

Author version available

Reply to the ‘comment on “$ per W metrics for thermoelectric power generation: beyond ZT”’ by G. Nunes, Jr, Energy Environ. Sci., 2014, 7, DOI: 10.1039/C3EE43700K

S. K. Yee, S. LeBlanc, K. E. Goodson and C. Dames, Energy Environ. Sci., 2014, 7, 3441 DOI: 10.1039/C4EE01119H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements