Issue 2, 2014

Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application

Abstract

LiNi1/3Co1/3Mn1/3O2 (NMC) is a highly promising cathode material for use in lithium ion batteries; unfortunately, its poor cycling performance at high cutoff voltages hinders its commercialization. In this study, for the first time, we employ atomic layer deposition (ALD) to coat lithium tantalum oxide, a solid-state electrolyte, with varying thicknesses on NMC in an attempt to improve battery performance. Our results indicate that utilization of a solid-state electrolyte as a coating material for NMC significantly improves performance at high cutoff voltages but is strongly dependent on coating thicknesses. Our investigation revealed that a thicker coating proved to be beneficial in preventing cathode material dissolution into the electrolyte and aided in maintaining the microstructure of NMC. Consequently, a thicker ALD coating resulted in increased electrochemical impedance of the cathode. The results of this study indicate that an optimized coating thickness is needed in order to strike a balance between maintaining structural stability while minimizing electrochemical impedance. The coating thicknesses are functionally specific, and for the best improvement of a cathode, a particular coating thickness should be sought.

Graphical abstract: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2013
Accepted
06 Nov 2013
First published
11 Nov 2013

Energy Environ. Sci., 2014,7, 768-778

Author version available

Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application

X. Li, J. Liu, M. N. Banis, A. Lushington, R. Li, M. Cai and X. Sun, Energy Environ. Sci., 2014, 7, 768 DOI: 10.1039/C3EE42704H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements