Jump to main content
Jump to site search

Issue 4, 2013

Periodic heating amplifies the efficiency of thermoelectric energy conversion

Author affiliations

Abstract

We show that the use of a periodic heat source, instead of a constant heat source, can improve the conversion efficiency of a thermoelectric power generator (TPG). A periodic heat source drives a periodic temperature difference across the thermoelectric with an amplitude ΔT. While the time average of ΔT is identical to the temperature difference under a constant heat source with equivalent energy input, the time average of (ΔT)2 is larger, resulting in improved conversion efficiency. Here we present experimental measurements on a commercial thermoelectric device (bismuth telluride based) to validate analytical and numerical models. These models show that maximum efficiency is achieved when the period of the heat source is much larger than the thermal time constant of the TPG. Under this quasi-steady condition, the thermoelectric figure of merit ZT is still the relevant parameter for material optimization. A conventional thermoelectric material with ZT = 1, operated with sinusoidal and square-wave heat sources (ΔT = 100 K, TCold = 300 K), can achieve 140% and 180% of the constant heat source efficiency; or otherwise stated, can perform like advanced materials with ZT of 1.6 and 2.8. Even greater improvement, inaccessible through materials-based ZT enhancements, can be achieved with low duty cycle heat sources.

Graphical abstract: Periodic heating amplifies the efficiency of thermoelectric energy conversion

Supplementary files

Article information


Submitted
21 Nov 2012
Accepted
19 Feb 2013
First published
19 Feb 2013

Energy Environ. Sci., 2013,6, 1267-1273
Article type
Paper

Periodic heating amplifies the efficiency of thermoelectric energy conversion

Y. Yan and J. A. Malen, Energy Environ. Sci., 2013, 6, 1267 DOI: 10.1039/C3EE24158K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements