Issue 6, 2011

Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform

Abstract

A carefully designed test cell platform with a new electrode structure is utilized to determine the intrinsic surface catalytic properties of an electrode. With this design, the electrocatalytic activity and stability of an La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathode is enhanced by a dense thin La0.85Sr0.15MnO3±δ (LSM) coating, suggesting that an efficient electrode architecture has been demonstrated that can make effective use of desirable properties of two different materials: fast ionic and electronic transport in the backbone (LSCF) and facile surface kinetics on the thin-film coating (LSM). Theoretical analyses suggest that the enhanced electrocatalytic activity of LSM-coated LSCF is attributed possibly to surface activation under cathodic polarization due to the promotion of oxygen adsorption and/or dissociation by the surface layer and the dramatically increased oxygen vacancy population in the surface film. Further, the observed time-dependent activation over a few hundreds of hours and durability are likely associated with the formation of a favorable hybrid surface phase intermediate between LSM and LSCF. This efficient electrode architecture was successfully applied to the state-of-the-art LSCF-based cathodes by a simple solution infiltration process, achieving reduced interfacial resistance and improved stability under fuel cell operating conditions.

Graphical abstract: Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2011
Accepted
23 Mar 2011
First published
04 May 2011

Energy Environ. Sci., 2011,4, 2249-2258

Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform

M. E. Lynch, L. Yang, W. Qin, J. Choi, M. Liu, K. Blinn and M. Liu, Energy Environ. Sci., 2011, 4, 2249 DOI: 10.1039/C1EE01188J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements