Jump to main content
Jump to site search

Issue 5, 2021
Previous Article Next Article

Core−shell GaP@C nanoparticles with a thin and uniform carbon coating as a promising anode material for rechargeable lithium-ion batteries

Author affiliations

Abstract

Transition metal phosphides are used as anode materials for lithium-ion batteries because of their high theoretical capacity and low polarization. In this work, a core–shell GaP@C nanocomposite was successfully synthesized by a simple chemical vapor deposition (CVD) method, utilizing commercial GaP as the raw material and xylene as the carbon source. The uniform thin carbon shell could alleviate the volumetric variation and improve the conductivity of the inner GaP. When used as an anode in lithium-ion batteries, the GaP@C nanocomposite has a capacity of 812 mA h g−1 at a current density of 0.5 A g−1 after 100 cycles. At a high current density of 2 A g−1, the GaP@C anode delivers a good capacity value of 1087 mA h g−1.

Graphical abstract: Core−shell GaP@C nanoparticles with a thin and uniform carbon coating as a promising anode material for rechargeable lithium-ion batteries

Back to tab navigation

Supplementary files

Article information


Submitted
07 Dec 2020
Accepted
19 Dec 2020
First published
21 Dec 2020

Dalton Trans., 2021,50, 1703-1711
Article type
Paper

Core−shell GaP@C nanoparticles with a thin and uniform carbon coating as a promising anode material for rechargeable lithium-ion batteries

J. Ma, H. Zhang, Y. Xin, S. Liu, Y. Li, L. Yang, G. Xu, T. Lou, H. Niu and S. Yang, Dalton Trans., 2021, 50, 1703
DOI: 10.1039/D0DT04166A

Social activity

Search articles by author

Spotlight

Advertisements