Issue 42, 2020

Direct dissolution of UO2 in carboxyl-functionalized ionic liquids in the presence or absence of Fe-containing ionic liquids

Abstract

Dissolution of UO2 is a prerequisite for the reprocessing of spent nuclear fuel. This study showed that UO2 could be directly dissolved in a single carboxyl-functionalized ionic liquid (IL), [HOOCMmim][Tf2N] 1-carboxymethyl-3-methylimidazolium bistriflimide, or [HOOCEtmim][Tf2N] 1-carboxyethyl-3-methylimidazolium bistriflimide. The addition of an extra Fe-containing IL, [Emim][FeCl4] (Emim, 1-ethyl-3-methylimidazolium) or [Bmim][FeCl4] (Bmim, 1-butyl-3-methylimidazolium) could significantly improve the dissolution kinetics. Results demonstrated that the dissolution process in the early stage could be described by using the pseudo first-order rate law. The apparent activation energy for UO2 dissolution in the mixture of the Fe-containing IL and carboxyl-functionalized IL was calculated to be ∼67 kJ mol−1, implying that the reaction was mainly controlled by a chemical process. Nevertheless, the influence of the diffusion process is non-negligible since the IL has a relatively high viscosity that can retard the diffusion of the formed uranyl species from the UO2 surface. Spectroscopic studies and density functional theory calculations indicated that the uranyl ion coordinated with carboxylate groups is the predominant product for UO2 dissolution in the single carboxyl-functionalized IL, while uranyl chloride complexes would also form in the mixed ILs. The dissolved uranyl species can be successfully recovered from the ILs by extraction. The success of UO2 dissolution in the carboxyl-functionalized IL with or without the Fe-containing IL indicates that the Fe-containing IL and oxygen can serve as an effective catalyst and oxidant for the dissolution of UO2, respectively.

Graphical abstract: Direct dissolution of UO2 in carboxyl-functionalized ionic liquids in the presence or absence of Fe-containing ionic liquids

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2020
Accepted
29 Sep 2020
First published
29 Sep 2020

Dalton Trans., 2020,49, 14881-14890

Direct dissolution of UO2 in carboxyl-functionalized ionic liquids in the presence or absence of Fe-containing ionic liquids

A. Yao, X. Xiong, M. Kang, Y. Guo, C. Chen and T. Chu, Dalton Trans., 2020, 49, 14881 DOI: 10.1039/D0DT02740E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements