Issue 35, 2020

Studies of the 4d and 5d 6H perovskites Ba3BM2O9, B = Ti, Zn, Y; M = Ru, Os, and cubic BaB1/3Ru2/3O3 polymorphs stabilised under high pressure

Abstract

The synthesis, structures and magnetism of six mixed 3d–5d oxides Ba3BM2O9 (B = Ti, Y, Zn; M = Ru, Os) are described. When prepared at ambient pressure the six oxides display a 6H type perovskite structure comprised of corner sharing BO6 and face sharing M2O9 motifs. Synchrotron X-ray diffraction reveals a small monoclinic distortion in Ba3ZnRu2O9; the remaining oxides exhibit a hexagonal structure. The magnetic properties are dominated by the M–M interactions across the shared face. Only in the mixed valent (M4+/M5+) Y oxides is evidence of long-range magnetic order found. Application of high pressure/high temperature synthetic methods for the Ru containing oxides changes the structure to the archetypical cubic Pm[3 with combining macron]m perovskite structure, where the B and Ru cations are disordered on the corner sharing BO6 octahedral sites. The magnetic properties of the cubic oxides are dominated by short range antiferromagnetic interactions, the chemical disorder inhibiting long range ordering.

Graphical abstract: Studies of the 4d and 5d 6H perovskites Ba3BM2O9, B = Ti, Zn, Y; M = Ru, Os, and cubic BaB1/3Ru2/3O3 polymorphs stabilised under high pressure

Article information

Article type
Paper
Submitted
03 Jul 2020
Accepted
04 Aug 2020
First published
05 Aug 2020

Dalton Trans., 2020,49, 12222-12233

Studies of the 4d and 5d 6H perovskites Ba3BM2O9, B = Ti, Zn, Y; M = Ru, Os, and cubic BaB1/3Ru2/3O3 polymorphs stabilised under high pressure

S. Injac, E. Solana-Madruga, M. Avdeev, H. E. A. Brand, J. P. Attfield and B. J. Kennedy, Dalton Trans., 2020, 49, 12222 DOI: 10.1039/D0DT02349C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements