Issue 20, 2020

2,6-Diiminopyridine complexes of group 2 metals: synthesis, characterisation and redox behaviour

Abstract

Treatment of the 2,6-diiminopyridine, NC5H3{C(Ph)[double bond, length as m-dash]N(Dip)}2-2,6 (PhDimpy, Dip = 2,6-diisopropylphenyl) with [MgI2(OEt2)2] gives the adduct complex [(PhDimpy)MgI2] in which the PhDimpy ligand is neutral. This complex can be singly reduced by KC8 or a magnesium(I) complex to give [(PhDimpy˙)MgI], in which PhDimpy acts as a radical anion. Double reduction of [(PhDimpy)MgI2] in diethyl ether yields [(PhDimpy)Mg(OEt2)], in which the magnesium centre is ligated by dianionic [PhDimpy]2−. [(PhDimpy)Mg(OEt2)] can alternatively be prepared by the simple, high yielding reaction between PhDimpy and activated magnesium. A comproportionation reaction occurs between [(PhDimpy)MgI2] and [(PhDimpy)Mg(OEt2)], leading to the quantitative formation of [(PhDimpy˙)MgI]. The heavier group 2 metal dimeric complexes [{(PhDimpy)M}2] (M = Ca, Sr, Ba) can be similarly accessed by reaction of PhDimpy with the activated metal, or by KC8 reduction of in situ generated [(PhDimpy)MI2] (M = Ca, Sr). All prepared complexes have been characterised by X-ray crystallography and NMR spectroscopy. Electrochemical investigations into the complexes incorporating [PhDimpy]2− ligands reveal that they can undergo quasi-reversible 1- and 2-electron reduction processes, quasi-reversible 1-electron oxidations, and largely irreversible 2-electron oxidation events. These studies suggest that the compounds hold promise as soluble reducing agents in organic and inorganic synthesis.

Graphical abstract: 2,6-Diiminopyridine complexes of group 2 metals: synthesis, characterisation and redox behaviour

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2020
Accepted
28 Apr 2020
First published
28 Apr 2020

Dalton Trans., 2020,49, 6627-6634

2,6-Diiminopyridine complexes of group 2 metals: synthesis, characterisation and redox behaviour

M. J. C. Dawkins, A. N. Simonov and C. Jones, Dalton Trans., 2020, 49, 6627 DOI: 10.1039/D0DT01278E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements